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Scientific Progress

Scientific Progress: 

Statement of the problem studied 

Solitons are short-duration pulsed waves, which can propagate in nonlinear dispersive media with unique nonlinear properties 

(and without changing their shape in lossless case). Their unique nonlinear properties have long captivated scientists. Electrical 

solitons, which had been passively produced using nonlinear transmission lines, are especially interesting, for they allow the 

use of the soliton physics in easily accessible electronics media. Prior to this proposal, by combining a specially designed 

amplifier with a nonlinear transmission line in a circular topology, we built for the first time an active electrical circuit in a discrete 

platform, which robustly self-generated a periodic train of electrical solitons [1-6]. This robust electrical analogue of 

mode-locked soliton lasers had not been built before, as oscillating tend towards instability. In our oscillator, the amplifiers 

tamed the unruly solitons [1, 2]. The goal of this proposal was to build on this demonstrated concept, and develop electrical 

soliton oscillators in integrated forms with improved speed, e.g., with the pulse duration into the picosecond regime. Better 

understanding the phase noise process of the electrical soliton oscillator constituted another integral part of the problems to be 

studied. 

Summary of the most important results [7-16] 

(1) Chip-scale CMOS integrated soliton oscillator of the circular topology: In this work, we partially integrated the circular soliton 

oscillator in CMOS technology [7]. Specifically, the special amplifier with the level-dependent gain with saturable absorption 

was implemented with 0.18um CMOS technology, and the varactors (pn junction diodes) of the nonlinear transmission line 

were implemented with the same CMOS technology. The inductors of the nonlinear transmission line were created by bonding 

gold wires back and forth between the pads on the CMOS chip and metallic pads on a glass substrate, where the CMOS chip 

was placed. Bonding was done by using an automated bonding machine to ensure consistency in wire length, with the 

estimated inductance variation from inductor to inductor with less than 5%. The use of the bonding wires for inductors is to 

ensure high-enough quality of the nonlinear transmission line. The oscillator oscillated from 0.9 to 1.9 GHz, with the pulse width 

ranging from 293 to 400 ps. This work represents the first chip-scale mode-locked system in any field. 

(2) Proof-of-concept discrete soliton oscillators with a new, reflective topology: We built reflection soliton oscillators, a new 

soliton oscillator topology, which self-start and self-generate a periodic train of short-duration soliton pulses [8]. The oscillator 

consists of a nonlinear transmission line, whose one end is connected to a special amplifier and the other end is open. In 

steady state, a self-generated sharp soliton pulse travels back and forth on the nonlinear line, reflected at both ends of the line 

due to the impedance mismatches. The amplifier produces a negative resistance for large signals and a positive resistance for 

small signals, and thus, the reflection from the amplifier provides gain for the main portion of the pulse to compensate loss, and 

attenuates small perturbations, which abound in the line due to its nonlinear properties, to ensure oscillation stability. The 

nonlinear line substantially sharpens the pulse. This work is in contrast to our earlier circular soliton oscillator, where the pulse 

is circulated instead of being reflected. Due to the reflection based operation, the reflection soliton oscillator is at least two times 

smaller than the circular soliton oscillator, and the energy efficiency is higher in the reflection soliton oscillator. An additional 

pulse sharpening mechanism provided at the open end of the nonlinear line further compresses the pulse. In an experimental 

prototype (discrete prototype for proof of concept), a duty cycle as short as 4.6% was attained with a pulse repetition period of 

9.7 ns and a pulse width of 445 ps. In another prototype, we put the reflection soliton oscillator in a phase-locked loop for 

frequency locking, where the phase-locked loop circuit was partially integrated with CMOS 0.18 um technology. 

(3) Integrated 16-ps GaAs mode-locked oscillators of the reflection topology: In this work, we developed a mode-locked 

electrical oscillator (self-sustained pulse generator) fully integrated in GaAs [9]. It uses our reflection-based mode-locking, 

described in the previous immediate section, and attains a 16-ps pulse width at 18.7-GHz pulse repetition rate. This is the 

fastest electrical mode-locked oscillator to date, and the first integration of the reflective mode-locked electrical oscillator. It 

works by sending a pulse back and forth on a coplanar waveguide with reflections at both ends. The reflection occurs with 

level-dependent gain at one end of the coplanar waveguide, and this process enables pulse formation as well as its 

stabilization. The measurement was done in time domain using an Agilent 93-GHz 86100C sampling oscilloscope. To ensure a 

definite phase relationship between a trigger and the oscillator signal, we used injection locking. 

(4) Phase-noise theory of distributed oscillators including soliton/pulsed oscillators: We for the first time conducted a general 

analysis of phase noise in distributed oscillators including soliton oscillators, whose essence was experimentally verified [10]. It 

has thus far been unclear how to calculate the phase noise of soliton oscillators, and it has been unknown whether or not its 

phase noise would be better than sinusoidal oscillators. The difficulty in the phase noise calculation of distributed oscillators, 

especially in pulse oscillators such as soliton oscillators, is due to a large number of voltage and current variables in 

transmission lines and a large number of distributed noise sources. Building up from Kaetner’s phase noise work, our method 

provides physical insight into the problem in an N-dimensional state space where N is the total number of voltage and current 

variables, and facilitates direct application to distributed oscillators. We showed that linear pulse oscillators have better phase 

noise than sinusoidal oscillators, against the usual thermodynamics argument, due to the shorter time a sharper pulse is 



exposed to a given noise perturbation. In the soliton pulse oscillator, however, due to amplitude-dependent speed of solitons, 

amplitude-to-phase conversion can significantly contribute to phase noise. This study highlights useful design strategies. The 

linear pulse oscillator can achieve very good phase noise, if its active circuit is designed to produce a very narrow pulse. 

Second, if the amplitude-to-phase noise conversion in the soliton oscillator can be mitigated by a proper active circuit design to 

reduce amplitude error's lifetime, due to soliton's sharpness, the soliton oscillator can yield very good phase noise.

(5) Proof-of-concept discrete soliton-based chaos oscillators: Chaos can be generated in various nonlinear media, such as 

hydrodynamic systems, optical fibers, and electronic circuits. Chaos generated from electronic circuits is especially interesting, 

as it greatly facilitates the examination of chaotic behaviors, and also it can be used for truly random number generation. There 

exist various electronic chaos generators such as Chua’s circuits, and these circuits generate low-dimensional chaos. 

High-dimensional chaos in electronics can be attained by coupling these low-dimensional chaotic behaviors, but stand-alone 

electronic high-dimensional chaos generators have seldom been reported. In this work, we developed such an electrical 

oscillator that intrinsically generates high-dimensional chaos [11, 12]. This oscillator combines an amplifier and a nonlinear 

transmission line in a circular topology as in some of our electrical soliton oscillators, but this time, we design the amplifier in 

such a way that it can promote the unruly behaviors of solitons and their collisions maximally. The oscillator was experimentally 

examined, and the Lyapunov analysis as well as the spectral measurement confirmed the generation of chaos. Furthermore, 

the analysis of the acquired data indicates correlation dimensions of about 11. 
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Abstract (200 words):  
 
Solitons are pulsed waves exhibiting unique nonlinear properties. In electronics domain, 
electrical solitons had been passively produced by using nonlinear transmission lines. 
Prior to this proposal, our group built, for the first time, an active electrical circuit in a 
discrete platform, which robustly self-generated a stable, periodic train of electrical 
solitons. This was achieved by combining a nonlinear transmission line with a specially 
designed amplifier in a circular topology. The goal of this proposal was to build upon the 
demonstrated concept and to develop electrical soliton oscillators in integrated forms 
with improved speed, e.g., with the pulse duration into the picosecond regime. Pursuing 
this goal, we have developed: 1) integrated CMOS soliton oscillators of the circular 
topology with a pulse width of 293 ps and a repetition period down to 530 ps; 2) proof-
of-concept discrete soliton oscillators with a new, reflective topology with a pulse width 
of 445 ps and repetition time of 9.7 ns (duty cycle of only 4.6%); 3) integrated GaAs 
mode-locked oscillators of the reflection topology with a pulse width of 16 ps and 
repetition time of 53 ps; 4) proof-of-concept discrete soliton-based chaos oscillators; and 
5) a phase-noise theory of distributed oscillators including soliton/pulsed oscillators.  
 
Scientific Progress:  
 
Statement of the problem studied  
 
Solitons are short-duration pulsed waves, which can propagate in nonlinear dispersive 
media with unique nonlinear properties (and without changing their shape in lossless 
case). Their unique nonlinear properties have long captivated scientists. Electrical 
solitons, which had been passively produced using nonlinear transmission lines, are 
especially interesting, for they allow the use of the soliton physics in easily accessible 
electronics media. Prior to this proposal, by combining a specially designed amplifier 
with a nonlinear transmission line in a circular topology, we built for the first time an 
active electrical circuit in a discrete platform, which robustly self-generated a periodic 
train of electrical solitons [1-6]. This robust electrical analogue of mode-locked soliton 
lasers had not been built before, as oscillating tend towards instability. In our oscillator, 
the amplifiers tamed the unruly solitons [1, 2]. The goal of this proposal was to build on 
this demonstrated concept, and develop electrical soliton oscillators in integrated forms 
with improved speed, e.g., with the pulse duration into the picosecond regime. Better 
understanding the phase noise process of the electrical soliton oscillator constituted 
another integral part of the problems to be studied.  
 
Summary of the most important results [7-16]  
 
1) Chip-scale CMOS integrated soliton oscillator of the circular topology: In this 
work, we partially integrated the circular soliton oscillator in CMOS technology [7]. 
Specifically, the special amplifier with the level-dependent gain with saturable absorption 
was implemented with 0.18um CMOS technology, and the varactors (pn junction diodes) 
of the nonlinear transmission line were implemented with the same CMOS technology. 
The inductors of the nonlinear transmission line were created by bonding gold wires back 



and forth between the pads on the CMOS chip and metallic pads on a glass substrate, 
where the CMOS chip was placed. Bonding was done by using an automated bonding 
machine to ensure consistency in wire length, with the estimated inductance variation 
from inductor to inductor with less than 5%. The use of the bonding wires for inductors is 
to ensure high-enough quality of the nonlinear transmission line. The oscillator oscillated 
from 0.9 to 1.9 GHz, with the pulse width ranging from 293 to 400 ps. This work 
represents the first chip-scale mode-locked system in any field.  
 
2) Proof-of-concept discrete soliton oscillators with a new, reflective topology: We 
built reflection soliton oscillators, a new soliton oscillator topology, which self-start and 
self-generate a periodic train of short-duration soliton pulses [8]. The oscillator consists 
of a nonlinear transmission line, whose one end is connected to a special amplifier and 
the other end is open. In steady state, a self-generated sharp soliton pulse travels back and 
forth on the nonlinear line, reflected at both ends of the line due to the impedance 
mismatches. The amplifier produces a negative resistance for large signals and a positive 
resistance for small signals, and thus, the reflection from the amplifier provides gain for 
the main portion of the pulse to compensate loss, and attenuates small perturbations, 
which abound in the line due to its nonlinear properties, to ensure oscillation stability. 
The nonlinear line substantially sharpens the pulse. This work is in contrast to our earlier 
circular soliton oscillator, where the pulse is circulated instead of being reflected. Due to 
the reflection based operation, the reflection soliton oscillator is at least two times smaller 
than the circular soliton oscillator, and the energy efficiency is higher in the reflection 
soliton oscillator. An additional pulse sharpening mechanism provided at the open end of 
the nonlinear line further compresses the pulse. In an experimental prototype (discrete 
prototype for proof of concept), a duty cycle as short as 4.6% was attained with a pulse 
repetition period of 9.7 ns and a pulse width of 445 ps. In another prototype, we put the 
reflection soliton oscillator in a phase-locked loop for frequency locking, where the 
phase-locked loop circuit was partially integrated with CMOS 0.18 um technology.  
 
3) Integrated 16-ps GaAs mode-locked oscillators of the reflection topology: In this 
work, we developed a mode-locked electrical oscillator (self-sustained pulse generator) 
fully integrated in GaAs [9]. It uses our reflection-based mode-locking, described in the 
previous immediate section, and attains a 16-ps pulse width at 18.7-GHz pulse repetition 
rate. This is the fastest electrical mode-locked oscillator to date, and the first integration 
of the reflective mode-locked electrical oscillator. It works by sending a pulse back and 
forth on a coplanar waveguide with reflections at both ends. The reflection occurs with 
level-dependent gain at one end of the coplanar waveguide, and this process enables 
pulse formation as well as its stabilization. The measurement was done in time domain 
using an Agilent 93-GHz 86100C sampling oscilloscope. To ensure a definite phase 
relationship between a trigger and the oscillator signal, we used injection locking.  
 
4) Phase-noise theory of distributed oscillators including soliton/pulsed oscillators: 
We for the first time conducted a general analysis of phase noise in distributed oscillators 
including soliton oscillators, whose essence was experimentally verified [10]. It has thus 
far been unclear how to calculate the phase noise of soliton oscillators, and it has been 
unknown whether or not its phase noise would be better than sinusoidal oscillators. The 



difficulty in the phase noise calculation of distributed oscillators, especially in pulse 
oscillators such as soliton oscillators, is due to a large number of voltage and current 
variables in transmission lines and a large number of distributed noise sources. Building 
up from Kaetner’s phase noise work, our method provides physical insight into the 
problem in an N-dimensional state space where N is the total number of voltage and 
current variables, and facilitates direct application to distributed oscillators. We showed 
that linear pulse oscillators have better phase noise than sinusoidal oscillators, against the 
usual thermodynamics argument, due to the shorter time a sharper pulse is exposed to a 
given noise perturbation. In the soliton pulse oscillator, however, due to amplitude-
dependent speed of solitons, amplitude-to-phase conversion can significantly contribute 
to phase noise. This study highlights useful design strategies. The linear pulse oscillator 
can achieve very good phase noise, if its active circuit is designed to produce a very 
narrow pulse. Second, if the amplitude-to-phase noise conversion in the soliton oscillator 
can be mitigated by a proper active circuit design to reduce amplitude error's lifetime, due 
to soliton's sharpness, the soliton oscillator can yield very good phase noise. 
 
5) Proof-of-concept discrete soliton-based chaos oscillators: Chaos can be generated in 
various nonlinear media, such as hydrodynamic systems, optical fibers, and electronic 
circuits. Chaos generated from electronic circuits is especially interesting, as it greatly 
facilitates the examination of chaotic behaviors, and also it can be used for truly random 
number generation. There exist various electronic chaos generators such as Chua’s 
circuits, and these circuits generate low-dimensional chaos. High-dimensional chaos in 
electronics can be attained by coupling these low-dimensional chaotic behaviors, but 
stand-alone electronic high-dimensional chaos generators have seldom been reported. In 
this work, we developed such an electrical oscillator that intrinsically generates high-
dimensional chaos [11, 12]. This oscillator combines an amplifier and a nonlinear 
transmission line in a circular topology as in some of our electrical soliton oscillators, but 
this time, we design the amplifier in such a way that it can promote the unruly behaviors 
of solitons and their collisions maximally. The oscillator was experimentally examined, 
and the Lyapunov analysis as well as the spectral measurement confirmed the generation 
of chaos. Furthermore, the analysis of the acquired data indicates correlation dimensions 
of about 11.  
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